

دوازدهمیـن سمینـار سراسـری انجمـن علمـی نفـرولوژی ایـران کلیه در شرایط کریتیکال

۱۸ تا ۲۰ مهـر ۱۴۰۳ دانشگاه علوم پزشکی و خدمات بهداشتی درمانی زنجان مرکز همایشهای بین المللی روز به

The Role of POCUS in Fluid Estimation

in ICU Patients with AKI

Hamidreza Badeli, M.D Pediatric Nephrologist Professor Of Guilan University Medical Sciences

Outlines

- The main causes of fluid overload
- Organ affecting by fluid overload
- The ways of detection
- POCUS
- Advanced and POCUS

The Practice of Nephrologists

- Electrolyte disorders
- Assessment of Fluid and Hemodynamic Status

The Main organs affecting by overload

Gregorio Romero et al; *Clinical Kidney Journal*, Volume 16, Issue 2, February 2023

Main Causes of Venous Congestion

- Heart failure
- Right-sided heart failure
- Renal failure
- Pulmonary hypertension
- Constrictive pericarditis
- Tricuspid valve disease (stenosis or regurgitation)
- Fluid overload

Current Fluid status assessment Methods

Fluid status assessment

- Physical exam
- Signs of jugular venous distention
- Third heart sounds
- Rales
- Peripheral edema

Torino C, et al : The agreement between auscultation and lung ultrasound in hemodialysis patients: The LUST study. *Clin J Am Soc Nephrol* 11: 2005–2011, 2016.

Radiographic signs

- Pleural effusions
- Kerley B lines
- Aid in fluid status assessment
- Natriuretic peptides
- Pulmonary artery catheters

• Maw AM, et al, Accuracy of point-of-care lung ultrasonography and chest radiography in adults with symptoms suggestive of acute decompensated heart failure: A systematic review and meta-analysis. JAMA Netw Open 2: e190703, 2019. 10.1001/jamanetworkopen.2019.0703

• Goetze JP, et al: Cardiac natriuretic peptides. Nat Rev Cardiol 17: 698–717, 2020. 10.1038/s41569-020-

دوازدهمین سمینار سراسری انجمن علمی نفرولوژی ایران **کلیه در شرایط کریتیکال**

The **12**th National Congress of the Iranian Society of Nephrology (NIrSN)

The Role of POCUS in Fluid Estimation

in ICU Patients with AKI

Point of Care of Ultrasound ()

This method involves clinicians utilizing portable ultrasound systems directly at a patient's bedside for both diagnostic and therapeutic purposes

POCUS vs Bedside Ultrasound

Advantages POCUS in Fluid Estimation

- Non-invasive
- Immediate results
- Real-time assessment of fluid status

The 12th National Congress of the Iranian Society of Nephrology (NIrSN)

• Repeatable

Plausible ultrasound methods for assessing affected organs

- Lung Ultrasound
- Ascites
- Venous congestion(hepatic, portal and renal veins)
- Focused Cardiac assessment including:
 - 1. Ejection fraction assessment
 - 2. Ventricular filling pressures
 - 3. Presence of pericardial effusion
 - 4. The relative heart chamber size
 - 5. The estimated right-atrial pressure

Argaiz ER, Koratala A, *Kidney360*. 2021;2(8):1326-1338. Published 2021 May 27. doi:10.34067/KID.0006482020

دوازدهمین سمینار سراسری انجمن علمی نفرولوژی ایران **کلیه در شرایط کریتیکال**

د من نشریای کیاریان انچمن نشریای کیاریان اندمانیم Society of Nethiology

The **12th** National Congress of the Iranian Society of Nephrology (NIrSN)

Lung Ultrasound

2nd Intercostal space 3rd Intercostal space

Straight,

linear probe

Lung Ultrasound

- Organ filled with air (old edition Harrison's Book) •
- In 1994 that Daniel Lishestein introduced the BLUE protocol •
- The ultrasound can detect: •
 - **Pleural Effusion** •
 - Pneumonia •
 - Pneumothorax •
 - Pulmonary Edema •

21st Edition NCIPLES INTERNAL MEDICINE

LOSCALZO FAUCI **KASPER** HAUSER LONGO **VOLUME 1 JAMESON**

Mc Graw Hill

Kasper D, Fauci A, Hauser S et al. Harrison's Principles of Internal Medicine, 19e. Vol. 1. New York, NY:Mcgraw-Hill, 2015

Lung Ultrasound

- A-Lines
- B-lines
- Conditions other than cardiogenic pulmonary edema:
- Pneumonia
- Acute respiratory distress syndrome
- Pulmonary fibrosis
- Contusion

B Lines in Lung

Pulmonary Edema

Gargani, L et al,. Cardiovasc Ultrasound 9, 6 (2011). https://doi.org/10.1186/1476-7120-9-6

LUS to detect pulmonary congestion

- In a study including 79 patients receiving hemodialysis who were deemed to be at higher cardiovascular risk, only about half of those with severe congestion on LUS (defined as >30 B-lines on a 28-zone scan) had crackles on lung auscultation.
- In patients with moderate congestion on LUS (15 to <30 B-lines), the prevalence of crackles was only 31%
- In patients with acute decompensated heart failure, LUS was shown to be more sensitive for detection of pulmonary edema than chest radiography, which is the typical first-line imaging

[•] Maw AM, et al: Diagnostic accuracy of point-of-care lung ultrasonography and chest radiography in adults with symptoms suggestive of acute decompensated heart failure: A systematic review and meta-analysis. *JAMA Netw Open* 2: e190703, 2019. 10.1001/jamanetworkopen.2019.0703

[•] Torino C, et al: The agreement between auscultation and lung ultrasound in hemodialysis patients: The LUST study. *Clin J Am Soc Nephrol* 11: 2005–2011, 2016.

- Prognostic Significance: in a multicenter observational study including 392 patients with ESKD who were on hemodialysis, those with very severe congestion (>60 B-lines on a 28-zone scan) had a 4.2-fold risk of death (hazard ratio, 4.20; 95% CI, 2.45 to 7.23) and a 3.2-fold risk of cardiac events (hazard ratio, 3.20; 95% CI, 1.75 to 5.88) after adjusting for HF class and other risk factors compared with those having mild or no congestion (Koratala A, Chamarthi G, Kazory A: Point-of-care ultrasonography for objective volume management in end-stage renal disease. *Blood Purif* 49: 132–136, 2020. 10.1159/000503000)
- Role in Guiding the Therapy: in patients with acute exacerbation of HF, B-line count has been shown to consistently decrease with diuretic therapy soon after presentation, thereby guiding further management (Cortellaro F, : Lung ultrasound for monitoring cardiogenic pulmonary edema. *Intern Emerg Med* 12: 1011–1017, 2017. 10.1007/s11739-016-1510-)

Inferior vena cava (IVC) Right Atrial Pressure

In patients who are spontaneously breathing

- the IVC collapses during inspiration due to negative intrathoracic pressure
- CI = (IVC max-IVC min)/IVC max
- An IVC diameter of ≤2.1 cm and collapsibility of >50% with a sniff indicates normal RAP of 3 mm Hg (0–5 mm
- an IVC diameter of >2.1 cm with <50% inspiratory collapse indicates high RAP of 15 mm Hg (10–20 mm Hg),
- Scenarios in between correspond to an intermediate value of 8 mm Hg

Rudski LG, : J Am Soc Echocardiogr 23: 685–713, quiz 786–788, 2010. 10.1016/j.echo.2010.05.010

SKI LG, : J Am Soc Echocaralogr 23: 685–713, quiz 786–788, 2010. 10.1016/J.echo.2010.05.010

IVC Measurements Pitfall

- Mechanically ventilated because
- Normal collapsing
- Frail chest of elderly

IVC is a good indicator of central venous pressure (CVP) not reliable for volume status

Pleural Effusion & Ascites

VExUS

Venous Excess Ultrasound

220 | G. Romero-González et al.

Figure 1: Systemic consequences of congestion. Abbreviations: GFR: Glomerular filtration rate. Adapted from [6].

دوازدهمین سمینار سراسری انجمن علمی نفرولوژی ایران **کلیه در شرایط کریتیکال**

لایت اللہ میں اللہ می اللہ میں الل

The **12**th National Congress of the Iranian Society of Nephrology (NIrSN)

Venous Excess Ultrasound VExUS

<u>Step 1</u>: IVC Diameter: If ≥2cm, proceed to step 2

Interpretation

- In the original study by Beaubien-Souligny, 145 patients were evaluated for the first 72 h after cardiac surgery using the VExUS grading system [<u>67</u>].
- A severe VExUS grade on admission
 was associated with high likelihood
 of AKI (HR 2.82 after adjustment)
 and a favorable positive likelihood
 ratio (6.37) outperforming invasive
 central venous pressure monitoring.

Beaubien-Souligny W., Rola P., Haycock K., Bouchard J., Lamarche Y., Spiegel R., Denault A.Y. Quantifying systemic congestion with Point-Of-Care ultrasound: Development of the venous excess ultrasound grading system. *Ultrasound J.* 2020;12:16

VExUS Ultrasound Score:

- Grade 0(NO Congestion): IVC <2cm
- Grade 1(MILD Congestion): IVC >2cm with any combo of Normal or Mildly Abnormal Patterns
- Grade 2(MODERATE Congestion): IVC >2cm and ONE severely Abnormal Pattern =
- **Grade 3**(SEVERE Congestion): IVC >2cm and >2 Severely Abnormal Patterns =

The VExUS Score

- WHAT is causing the venous congestion but
- The relative severity of end-organ venous congestion syndrome
- It then allows to know:
 - 1. Fluid overload
 - 2. Right heart failure
 - 3. Pulmonary hypertension
 - 4. Left ventricular dysfunction, etc.

Focused Cardiac Assessment

Copyright © 2021 National Kidney Foundation, Inc. Terms and Conditions

- The left ventricle systolic and diastolic function
- Cardiac filling pressures
- The right ventricle size and function.

Is the EF normal (>50%)? PSAX

1. Estimating ejection fraction (EF)

- Eyeballing is a qualitative approach that has shown very good correlation with all formal methods routinely used to assess ejection fraction (p < 0.001): like:
- AV plane displacement
- four-chamber Simpson ejection fraction,
- Biplane Simpson ejection fraction
- Wall-motion score index

Gudmundsson, P.; Rydberg, E.; Winter et al, Int. J. Cardiol. 2005

E-Point Septal Separation (EPSS)

- The mitral-valve waveform on M-mode contains two E and A peaks:
- E-peak" is larger one and corresponds to the maximal mitral-valve opening in early LV diastole.
- The second, smaller peak is called the "A-point" and corresponds to atrial contraction later in LV diastole

https://sjrhem.ca/advanced-cardiac-echo-a-review-of-e-point-septal-separation/ https://doi.org/10.1053/j.ackd.2021.04.001

EPSS measuring EF

- A study comparing the EPSS-derived EF with the EF measured by MRI, derived the following equation:
- LVEF = $75.5 (2.5 \times \text{EPSS})$ with a correlation of r = 0.80
- Moreover, an EPSS measurement > 7 mm demonstrated 100% sensitivity for detecting severely reduced EF (<30%)

دوازدهمین سمیت

McKaigney, C.J.; Krantz, M.J.; La Rocque, C.L.; Hurst, N.D.; Buchanan, M.S.; Kendall, J.L. E-point septal separation: A bedside tool for emergency physician assessment of left ventricular ejection fraction. *Am. J. Emerg. Med.* **2014**, *32*, 493–497.

The **19**th International Congress of Nephrology, Dialysis and Transplantation (ICNDT) 12-15 December 2023 . Homa Hotel, Tehran

Mitral annular plane systolic excursion (MAPSE) for EF estimation

- The displacement of the mitral valvular plane in the z-direction and reflects left-ventricular longitudinal contraction or shortening
- The EF can be derived by using the following formula: $EF = 4.8 \times MAPSE (mm) + 5.8$.
- A MAPSE \geq 10 mm is considered normal EF

MAPSE = MITRAL ANNULUS SYSTOLIC PLANE EXCURSION

Left - Ventricular Filling Pressures (LVFPs)

- In the absence of hypertension, LVFP elevation is an important finding to guide the clinical assessment of volume status.
- For POCUS examinations, the trans-mitral flow Doppler is commonly used.
- The normal tracing consists of E (early rapid filling period) and A (atrial systole corresponding to the end of diastole) waves, respectively. Normally, the E-wave peak velocity exceeds that of the A wave (E/A ratio >1).

Agarwal, R. Hypervolemia is associated with increased mortality among hemodialysis patients. Hypertension **2010**, 56, 512–517

The relative chamber size

- In the apical four-chamber view, the right atrium is equal to 1/3 of the right heart while the right ventricle represents the other 2/3.
- To assess for right-ventricular dilatation, the use of the "rule of thirds" can be applied:
- Normally, the size of the right ventricle is equal to 2/3 of the left ventricle.
- Failure to adhere to the rule of thirds indicates a dilated state of the related cardiac chamber, prompting the need to investigate the underlying pathology

Georgios Tsangaris et al, Kidney Dial. 2022, 2(2),

Pericardial effusion

- Parasternal long axis
- Parasternal short axis
- Apical four chambers
- Subcostal four chambers

Is it possible do POCUS

dvances in Critical Care ediatric Nephrology	Focused Echocardiogram: A Case Based Approach	7
int of Care Ultrasound d Diagnostics	Hamidreza Badeli and Afagh Hasanzadeh Rad	
Sidharth Kumar Sethi Rupesh Raina Mignon McCulloch Timothy E. Bunchman		Const for Const for
Sidharth Kumar Sethi Rupesh Raina Mignon McCulloch Timothy E. Bunchman <i>Editors</i>	Ultrasound Guided Procedures in PICU	<u>.</u>

PLOS ONE

GOPEN ACCESS PEER-REVIEWED RESEARCH ARTICLE

The effect of short-course point-of-care echocardiography training on the performance of medical interns in children

Esfandiar Nazari, Zahra Bahman Tajani, Saman Maroufizadeh, Mohammad Ghorbani, Afagh Hassanzadeh Rad, Hamidreza Badeli 🖬

Published: December 15, 2022 • https://doi.org/10.1371/journal.pone.0278173

دوازدهمین سمینار سراسری انجمن علمی نفرولوژی ایران **کلیه در شرایط کریتیکال**

د در ایجاری ایجاری الایمالیم کارور کارور کارور الایمالیم Society of Meridian

The **12**th National Congress of the Iranian Society of Nephrology (NIrSN)

